AD-A249 417
IR
RL-TR-91-274, Vol | (of five)

Final Technical Report
November 1991

PENELOPE: AN ADA VERIFICATION
ENVIRONMENT, Developing Formally
Verified Ada Programs

ORA Corporation i e
1;;

Sponsored by
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE,; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Strategic Defense Initiative Office or the U.S.

Government. 92-1 1269
TR

Rome Laboratory
Air Force Systems Commanu
Griffiss Air Force Base, NY 13441-5700

92 4 27 4 1% |
—-—-—

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

Although this report references limited documents listed below, no limited
information has been extracted:
RL-TR-91-274, Vol Illa, lilb, IVa, and IVb, November 199]. Distribution
authorized to USGO agencies and their contractors; critical technology; Nov 91

RL-TR-91-274, Vol 1 (of five) has been reviewed and is approved for
publication.

APPROVED:

1 X

’10 — . f“z.’.w«u#"‘

. JOHN C. FAUST
Project Engineer

FOR THE COMMANDER:

) A
{‘j’” aé f ZZ/; /F—\—“

RAYMOND P, URTZ, JR.
Director
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed fromm the Rome Laboratory
mailing list, or if the addressee is no longer employed by your oirganization, please
notify RL(C3AB) Griffiss AFB NY [3441-570%. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

\ .

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

PENELOPE: AN ADA VERIFICATION ENVIRONMENT,
Developing Formally Verified Ada Programs

Norman Ramsey

Contractor: ORA Corporation

Contract Number: F30602-836-C-0071

Effective Date of Contract: 19 Aug 86

Contract Expiration Date: 30 Sep 89

Short Title of Work: PENELOPE: AN ADA VERI-
FICATION ENVIRONMENT, Developing Formally Veri-
fied Ada Programs

Period of Work Covered: Aug 86 - Aug 39

Principal Investigator: Maureen Stillman
Phone: (607) 277-2020

RL Project Engineer: John C. Faust
Phone: (315) 330-3241

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initia-
tive Office of the Department of Defense and was monitored
by John C. Faust, RL/C3AB, Griffiss AFB [344{-5700, under
contract F30602-86-C-0071.

REPORT DOCUMENTATION PAGE | cWgno-orosotes

Pubic reparting bLrden for this calection of Iformnation is estimated tosvarags | hoLs Der reENONEe, INCAXINg the trre for AVBWNg NETUCIONS, S8arching Eostng CIEA SOLTCes.
githerng sno rMartsining the cuts nesded $1d cOMpPELG nd reviewing the collaction of Information. Send commarts regarding this Durden estimate of ey cther aspect of this
muwmwhmummwmmmmhwommnm_ 1215 Jefterson
Davis Highwey, Sule 1204, Afdington, VA 222024302, and to the Offics of MWNWPMWW (0704-0188), Washingron, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 2. REPORT TYPE AND DATES COVERED
November [199] Final Aug 86 - Aug 89
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
PENELOPE: AN ADA VERIFICATION ENVIRONMENT, C - F30602-86-C-0071
Developing Formally Verified Ada Programs PE - 35167G/63223C
—_— PR - 1070/B413
6. AUTHOR(S) TA -01/03
Norman Ramsey WU - 02
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
ORA Corporation REPORT NUMBER
301A Dates Drive
Ithaca NY 14850-1313 ORA TR 17-3
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Strategic Defense Initiative AGENCY REPORT NUMBER
Office, Office of the Rome Laboratory (C3AB) RL-TR-91-274,
Secretary of Defense Griffiss AFB NY 1344]-5700 Vol I (of five)
Wash DC 20301-7100
11, SUPPLEMENTARY NOTES
RL Project Engineer: John C. Faust/C3AB/(315) 330-3241
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT Mmdmum 200 werds)

Odyssey Research Associates has undertaken a study of the feasibility of developing
formaliy verified Ada programs. We have designed a specification language for sequential Ada
programs. It is a member of the Larch family of specification languages. We have built a
prototype program editor that is intended to help programmers develop programs and proofs
from specifications, as advocated by Dijkstra and Gries (2,4). [t contains predicate transfor-
mers, which compute wp (an approximation to the weakest precondition of a program), and it
generates verification conditions.

The semantics of the specification language and the definition of the predicate transfor-
mers are derivable from a denotational definition of sequentia! Ada. The predicate transfor-
mers can be proved sound with respect to these definitions by structural induction on programs.
The denotational-style definition of the predicate transformers is well suited to an impiementa-
tion as an attribute grammar.

The program editor is designed to be used on program fragments, not just complete
programs. The next step in improving the prototype editor is to find ways to simplify the
intermediate values of wp so they can be used to guide the development of fragments into
programs.

14, SUBJECT TERMS 15 NUMBER OF PAGES
’\da, arch, L arch/Ada, Formal Methods, Formal Specification, 48
t6 PRICE CODE

Program Veritication, Predicate Transformers, Ada Verification

"7 SCOUTITY GLASSIFICATION 18, SEURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |20. UMITATION OF ABSTRACT
oF HEPOAT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01 -280-5500 g'tmo F glmng F:;vzz;?.
28102

—_—_—

Developing Formally Verified Ada Programs®

Norman Ramsey!
Odyssey Research Associates

October 10, 1988

Abstract

Odyssey Research Associates has undertaken a study of the feasi-
bility of developing formally verified Ada programs. We have designed
a specification language for sequential Ada programs. It is a member
of the Larch family of specification languages. We have built a pro-
totype program editor that is intended to help programmers develop
programs and proofs from specifications, as advocated by Dijkstra and
Gries [2,4]). It contains predicate transformers, which compute wp (an
approximation to the weakest precondition of a program), and it gen-
erates verification conditions.

The semantics of the specification language and the definition of
the predicate transformers are derivable from a denotational definition
«f sequential Ada. The predicate transformers can be proved sound
with respect to these definitions by structural induction on programs.
The denotational-style definition of the predicate transformers is well
suited to an implementation as an attribute grammar.

The program editor is designed to be used on program fragments,
not just complete programs. The next step in improving the prototype
editor is to find ways to simplify the intermediate values of wp so they
can be used to guide the development of fragments into programs.

Introduction

Writing formal specifications of programs and proving that programs meet
those specifications should help programmers develop more reliable software.

*This research has been sponsored by the USAF. Rome Air Development Center, under
contract number F30602-86-C-0071.

tCurrent address: Department of Computer Science, Princeton University, Princeton,
New Jersey 08544

Edsger Dijkstra and David Gries have stressed that a program should not
face verification as a hurdle after development, but should be developed
in such a way as to ensure its correctness [2,4]. One should begin with
a formal specification, and the development of the program and its proof
should follow from that specification. Gries, in his Science of Programming,
suggests ways to use a specification to guide the development of a program
and its proof.

We have undertaken to build software that will help programmers apply
the methods of formal development advocated by Gries and Dijkstra. The
software is designed to lead to formal verification tools with three properties:

o The tools should not just help to verify finished programs or to check
proofs of such programs, but should help programmers to develop ver-
ified programs.

e The tools should be based on sound, explicitly stated mathematics.

¢ The tools should support programming in a subset of Ada. since there
is a need for reliable software written in Ada.

Overview of results

We have designed a specification language, Larch/Ada-88, for sequential
Ada programs. We have implemented a prototype of an editor, Penelope.
which will help programmers develop and verify programs specified with
Larch/Ada-88. ! The prototype implementation supports a subset of Ada
that is roughly “PASCAL with exceptions.” We have completed some of the
mathematics that supports the Larch/Ada-88 definition and the Penelope
implementation.

Specification language The Larch/Ada-88 specification language is
part of the Larch family of two-tiered specification languages [5.19].2 The
two-tiered approach separates the specification of individual program mod-
ules from the specification of underlying abstractions. The Larch Shared

!The specification language was formerly known as PolyAnna. We have changed the
name of the language to Larch/Ada because it is a Larch interface language. We have
also given the name Penelope to our prototype verification system.

2We use “specification” in the traditional sense of a statement of requirements. What
the Ada Language Reference calls “specifications” should be thought of as like “declara-
tions” in other programming languages.

Language is used to specify the underlying abstractions: for example, it
can be used to define the notions of array, list, set, bag, and so on. A
Larch Shared Language specification defines a set of terms (and some the-
orems about the terms); this set becomes the assertion language used in
" Larch/Ada-88 specifications. .

Larch/Ada-88 (henceforth Larch/Ada) is a Larch interface language; it
is used to specify Ada programs by attaching assertions at certain points,
like the entry and exit points of subprograms. The specification constructs
of Larch/Ada are called annotations. since most of them are derived from
similar constructs in Anna {10].

Implementation Most verification tools work in batch mode (7,3].
The user writes a program, supplies a specification and appropriate asser-
tions, and then submits it all to a verification condition generator. The
resulting verification conditions must be shown to hold. A verification con-
dition for a program is an assertion whose truth guarantees that the program
satisfies its specification.

When a programmer using a batch system makes a refinement or dis-
covers a mistake, the whole job must be resubmitted, and correct work may
have to be redone. Moreover, most batch systems cannot verify program
fragments. As practiced by Gries and Dijkstra, program development con-
sists largely in building up correct fragments by accretion, and in refining
existing fragments. Batch verification fits poorly with these techniques.

We have replaced the traditional batch verification system with a pro-
gram editor, which we call Penelope. Using Penelope, programmers can
examine weakest preconditions as they are computed and can use them to
guide program development. Program fragments can be proved correct, then
picked up and placed in larger contexts.

We have built the Penelope editor by using the Cornell Synthesizer Gen-
erator [17,16]. Penelope can be used to create and edit abstract syntax trees
that represent parts of an annotated Ada program. The interface is that
of a traditional syntax-directed editor in which the user may use a mouse
or an EMACS-like command set to manipulate trees. Penelope computes
weakest preconditions as attributes of the nodes of the syntax tree.3 At-
tribute evaluation is incremental: that is, every time the user changes the
tree. weakest preconditions are recomputed where necessary, and the new

a
3Actually, as in Gries (4], the system works with an approzimation to the weakest M
precondition, called wp.
By ——
3 _ (DLotritution/]

!

<o

o

] v g as -~ s
i Av(_"-.‘«)’v‘.u.‘.l.tby Louns
Ao ender

! |
.Dist j Spesiel
1

preconditions are available for display. When certain Ada constructs are
used, Penelope generates a verification condition; typically one verification
condition is generated for each subprogram and one for each loop.

A user of Penelope begins by writing down a formal specification of an
Ada subprogram using Larch/Ada. (The formal specification takes the form
of an Ada “specification” augmented with subprogram annotations.) He or
she then builds the subprogram body, working backwards as described by
Gries [4). Penelope can be instructed to display weakest preconditions at any
point, and also to display any verification conditions that may be generated.
The user can alter the program and immediately observe the effects on
preconditions and verification conditions, since the recomputation of wp and
of verification conditions is incremental and automatic. (The preconditions
and verification conditions are simplified somewhat before being presented
to the user.)

The verification conditions are sentences in pure logic; their statement
is independent of program context. If they can be shown to hold, the pro-
gram containing them satisfies its specification. Penelope contains a proving
component that can be used to prove facts about integers, Booleans, and
Ada types like arrays and records. The proving component is primitive; the
proof of a program like binary search takes up many pages.

Formal foundations The formal foundation of Larch/Ada has two
parts, one dealing with assertions and another dealing with annotations.
The assertion part covers the semantics of the Larch/Ada assertion language
as defined using Larch Shared Language specifications. This semantics is
determined entirely by the semantics of the Larch Shared Language, and
is therefore independent of Ada. The assertion part also covers the formal
specification (using the Larch Shared Language) of Ada’s data types.

The annotation part connects the execution semantics of sequential Ada
with the annotations of Ada programs defined by Larch/Ada. The Penelope
editor’s weakest precondition computations are based on a formal statement
of predicate transformers. The predicate transformers define a function from
a Larch/Ada specification and an annotated Ada program to a set of verifi-
cation conditions. The transformers are based on a continuation semantics
for the sequential part of Ada. As part of this work, Polak [14] has shown
how to establish a formal connection between a continuation semantics and
predicate transformers. To define the predicate transformers, he lets the

denotation of a program be a function on terms of the Larch/Ada assertion
language.

Larch/Ada

Two-tiered specifications In the two-tiered system of specification, the
shared language component is vsed to define all the abstractions used in
specification and verification. For example, in an arbitrary-precision arith-
metic package, the shared language part of the specification would define
what we mean by integer and by addition. One might implement arbitrary-
precision arithmetic using the idea of registers of arbitrary length. The
shared language would be used to define what we mean by a register and its
length.

The interface language part of a specification is used to state what a pro-
gram does in terms of the abstractions defined in the shared language part.
The interface language part of the arbitrary-precision arithmetic package
would show which subprograms perform what operations on the data, and
would state that overflow never occurs.

Using the two-tiered system, a designer can keep the unpleasant details
introduced by the programming language isolated in the interface language
comrnonent. while doing the real intellectual work of specification in the
<ha - lan tnage component. It is »ossible to use " a» :ared language to say
~Xactn v aat is meant by, for examie. a stack or 1« ;ected graph, without
getting bogged down in details of exceptional conditions or of representation.

The shared language part of a specification defines the assertion lan-
guage used in the interface language part of the specification. Formulas in
this assertion language are formulas in first-order predicate logic. When we
attempt to prove that an implementation satisfies its specification, we first
apply the predicate transformers, which are based .n the definition of Ada.
to a program and its specification. The predicate transformers produce a
verification condition, which is a sentence in the assertion language. The
proof of the arification condition needs to refer only to the shared language
part of the specification; no further reference to the definition of Ada is
required. Since the assertion language is really a particular formulation of
first-order logic, checking the correctness of the proofs of verification condi-
tions is straightforward.

wt

Languages in the two-tiered system Three languages are impor-
tant in the two-tiered system of specification. The Larch Shared Language
enables users to write formal specifications of useful abstractions. It is a
single language, used to write specifications. The Larch Shared Language
part of a specification consists of one or more traits, each one of which may
specify several abstractions. The shared language part of a specification
defines an assertion language, which is the language used to refer to the ab-
stractions. (A sentence stating that a stack is not empty would be a Boolean
term in the assertion language.) In general, every shared language specifica-
tion defines a different assertion language, although the different assertion
languages have much in common, since they are just different formulations
of first-order logic.

Larch/Ada is the language in wh.ch we write the interface language
part of a specification. This part uses annotations to specify the behavior
of a program. The annotations contain assertions, which are formulas in
the assertion language defined by the shared language part of the same
specification.

Description of Larch/Ada The assertion language defined by a partic-
ular shared-language specification is essentially a particular predicate calcu-
lus. We will describe the features of the Larch/Ada interface language, then
give an example.

The simplest Larch/Ada annotation is the embedded assertion. The as-
sertion is a formula in the current assertion language (defined by the shared
language part of the current specification). Free variables in the assei.ion
refer to program variables. Embedded assertions may be inserted at certain
control points in an implementation (i.e. between statements or between
declarations); they constrain the implementation to satisfy the assertion
whenever control reaches that point. In other words, the embedded asser-
tion says that, whenever control reaches it, if we substitute the actual values
of program variables into the assertion. it must denote truth. The embedded
assertion can be used only in an implementation, as a guid~ to the predicate
transformers; it cannot be used in specifications.

Larch/Ada’s subprogram annotations are used both to constrain subpro-
gram implementations. and to specify subprograms. The entry/exit kinds
are the in annotation, the out annotation. and the result annotation. Each
of these contains a single assertion. They are used to constrain states on

6

entry to a subprogram, to constrain states on exit from a subprogram, and
to constrain the values a function might return.

Also among the subprogram annotations are several ezception propaga-
tion annotations, which are used to say when exceptions may and may not
be raised, when exceptions must be raised, and what conditions must hold
when exceptions are raised. Finally there is the side effect annotation. which
is used to document side effects on or dependence on global variables.

Larch/Ada has two features which help make the annotation mechanism
more powerful., The first is the “IN variable.” Within a subprogram, pa-
rameter names can be modified by IN to denote the value of the parameter
on entry to the subprogram. IN variables are essential in subprogram spec-
ifications. because we almost always need to refer to the initial values of
parameters. For example, here are spacifications for some of the familiar
stack operations:

PROCEDURE push(s: IN OUT stack; x: element);

--| WHERE
-~ OUT s = push(IN s,x);
--| END WHERE;

PROCEDURE pop(s: IN OUT stack);

--] WHERE

-=| IN NOT is_empty(s);
--1 OUT s = pop(IN s);
--| END WHERE;

The other enriching feature of Larch/Ada is a way to introduce “virtual
variables.”* These variables are not used in writing specifications, but are
defined within implementations to help in proofs of correctness. Their values
don’t actually affect the results of a computation. Larch/Ada allows the
user to declare virtual variables. to assign to them, and to use them in
annotations.

Finally, in support of data abstraction (packages with private types),
Larch/Ada enables the user to define abstraction functions using the Larch
Shared Language, and to associate these abstraction functions with Ada
types, using the based on annotation. Thus. a user writing an arbitrary-
precision arithmetic package might implement registers using arrays, and

*These are called “ghost variables” by Gries and Dijkstra; the name “virtual variable”
is from Luckham [10).

-1

Figure 1: Shared language specification of set operations (Wing [19])

SetOfE: trait
includes Integer
introduces
empty: — SI
add: SI, E — SI
remove: SI, E — SI
has: SI, E — Bool
isEmpty: SI — Bool
card: SI — Int
constrains empty, add, remove, has, isEmpty, card so that
SI generated by [empty, add]
for all {s: SI, e. el: E]
remove(empty,) = empty
remove(add(s, e). el) =
ife = el then remove(s, el) else add(remove(s. el). e)
has(empty, e) = false
has(add(s, e),el) = ife = el then true else has(s. el)
isEmpty(empty) = true
isEmpty(add(s. e)) = false
card(empty) = 0
card(add(s.e}) = ifhas(s, e¢) then card(s) else 1 + card(s)

would then define an abstraction function from arrays to registers. The
proofs of correctness of implementations of abstract data types are as de-
scribed by Hoare [8]; the abstraction function is used to rewrite a specifica-
tion that was in terms of an abstract type to a new specification in terms of
a concrete type.

Using Larch/Ada As an example, we will present a Larch/Ada specifi-
cation for some set operations. Jeannette Wing used these operators in her
presentation of a Larch interface language for CLU [19]. As she did. we will
use a Larch Shared Language description of sets and set operations. The
trait describing these operations, called SetOfE. is shown in Figure 1.

We begin our example with the specification of a “choose” procedure
that selects a member of a set, removes it from the set, and returns it.
Since Ada functions may not have side effects on their parameters, we will
formulate the returned member as an OUT parameter:

--| WITH SetOfE WITH [set FOR si, integer FOR e];
PROCEDURE choose (IN OUT s: set; i: OUT integer);
--| WHERE

--| IN NOT IsEmpty(s);

== OUT has(IN s, i) AND s = remove(IN s, i);
--| END WHERE;

The =-~| WITH annotation specifies that SetOfE is the trait that defines
the notion of set and the operations IsEmpty, has. and remove. The IN an-
notation states that choose may be called only on nonempty sets. The
OUT annotation gives the relation between the initial and final values of the
set s and the final value of the integer i. (Notice that the final values
are specified by giving just the variable name, while the initial values are
specified by modifying the name by IN. In the IN annotation. all variables
are implicitly modified by IN.) Because no side effect annotation is present.
choose may not modify or read a..v global variables.

Figure 2 shows a Larch/Ada s} ~cification for a set nackage. This package
specifies the same operators as the similar example in Wing [19].

Formal foundation of Larch/Ada and Penelope

Connecting Ada to a denotational model Formal verification of Ada
programs must be based on a formal definition of the Ada language itself, but
at this time there is no official formal definition of Ada. We circumvent this
difficulty by providing a denotational model of a computing language Ada’.
and by considering Larch/Ada to be a specification language for Ada’. Ada
and Ada’ have the same syntax. and we argue informally that for a restricted
class of programs and computations they have the same observable behavior.

We restrict Ada most by omitting from Ada’ all features involving con-
currency. While there is widespread consensus on what are good methods
to model and specify sequential imperative languages. there is no similar
consensus on the utility of the various proposed methods of modeling and
specifying concurrent programs. We have omirted other features from Ada’
because they are machine-dependent (e.g. rep:esentat.on clauses) or because

Figure 2: Larch/Ada specification for a set package

--| WITH SetOfE WITH [integer FOR e];

PACKAGE sets IS

TYPE set IS PRIVATE; --| based on si;

FUNCTION pair(i, j : integer) RETURN set;
--| WHERE
-1 RETURN add(add(empty, i), j);
--| END WHERE;

PROCEDURE union(sl : set; s2 : IN OUT set);
-~| WHERE
-1 OUT (FORALL j::((has(s2, j)=has(IN si, j))
--1 OR has(IN s2, j)));
--) END WHERE;

PROCEDURE intersect(si : set; s2 : IN OUT set);
--| WHERE
--| OUT (FORALL j::((has(s2, j)=has(IN s1, j))
-~ AND has(IN s2, j)));
--| END WHERE;

FUNCTION member(s : set; i : integer) RETURN boolean;
--| WHERE
--1 RETURN has(s, i);
--| END WHERE;

FUNCTION size(s : set) RETURN integer;
--| WHERE
-~ RETURN card(s);
--| END WHERE;

END sets;

10

it is not feasible to formalize them (e.g. the exact circumstances under which
storage_error is raised). Here is a partial list of omitted features:

e Concurrency
e Real number types

¢ Representation specifications and other implementation-dependent or
machine-dependent features

o Unchecked conversion and unchecked deallocation

e The predefined exceptions storage_error and numeric_error (i.e. we
consider that no execution of an Ada’ program ever raises these excep-
tions), and computations that result in “undetected numeric overflow™

o Optimizations that cause execution of Ada statements in other than
the canonical order

¢ Parameter aliasing in procedure calls
e Any program called erroneous by the Ada reference manual

Some of these restrictions (e.g. that forbidding aliasing) can be enforced by
suitable static checks.

Although Ada’ is not Ada, they are intended to be equivalent within our
area of interest, and we will not distinguish them in what follows.

Connecting the denotational model to Larch/Ada and the predi-
cate transformers The predicate transformers implemented in Penelope
are derived from a continuation semantics for Ada. The task of defining a
continuation semantics for Ada has been considerably simplified by two ex-
pedients. First, the static semantics of Ada is not part of the definition; the
definition assumes a suitably checked and attributed abstract syntax repre-
sentation of programs. Second, the semantics of the Ada tvpes is not part of
the definition; instead, the semantics of Ada types is defined by Larch Shared
Language specifications. The technique used for deriving predicate trans-
formers from a denotational semantics is one developed by Polak [13.14].
The current definition of the predicate transformers used in Penelope does
not provide for proofs of termination.

Here we give an example that shows what we mean when we say that
Larch/Ada and Penelope are formally based. The example suggests how we

11

define the semantics of Larch/Ada and how we show that the VC generation
implemented in Penelope is sound.

Generating verification conditions involves manipulating a number of
different languages. Since a VC generator takes as input a program and
a specification, and produces as output an assertion (the verification con-
dition), the fundamental languages are the programming language P, the
specification language S, and the assertion language A. For simplicity, we
take the assertion language as fixed, although it is actually determined using
the shared language part of the specification.

The actual input to Penelope is a specification together with an an-
notated implementation; we will call that conglomerate V', and we define
projection functions that extract the relevant parts:

m: V=P Extract the implementation without annotations
o:V-=3S5 Extract the specification

Then the VC generator is a function vegen : V — A, and we wish to show
that vegen is sound. i.e. whenever the verification condition vcgen(v) holds.
the program wv satisfies its specification ov.

We need to consider the denotations of the various syntactic objects we
have been discussing. For simplicity, we'll let the denotation of a program
be a mapping from states to states (this makes sense even for a continuation
semantics if one considers whole programs). We'll call B the special Boolean
domain consisting of the two elements truth and falsehood (which we’ll write
as t and f). If the set of states is X. we have

Mp:P— (X —X) A program denotes a state changer.
Ms:5— (X —X)— B) A specification denotes a predicate on state changers.
My:A—(X—B) An assertion denotes a predicate on states.

Intuitively, a program is a function from states to states. a specification
defines a predicate (“satisfaction™) on programs. and an assertion defines a
predicate on states (also called “satisfaction™). A program p € P satisfies a
specification s € S if

(Mss)(Mpp) =t.

The semantics of the specification language can be defined in terms of
the semantics of the programming and assertion languages, Mp and M 4.
provided we have a fixed (not necessarily finite) set of states X'. If the spec-
ification language is a simple one that gives only entry and exit assertions.

12

i.e. § = A x A, then we can define
Ms{ay,az)p = Vz € X.M,a1z = M,az(pz),

where p = Mp(p) is a state transformer. The definition says that a program
satisfies its specification if, whenever the entry condition a; holds on entry
to the program, the exit condition a; holds on exit from the program. (We
are using = to denote mathematical implication.)

The semantics of Larch/Ada is defined in two steps: first, we define
a mapping from Larch/Ada to a simpler language in which a specification
consists of an entry condition, an exit condition for normal termination, and
exit conditions for termination by raising exceptions. In the second step we
define the semantics of the simpler language; this language is essentially
S = A x list A, and the definition of its semantics is very similar to that
just shown.

As the discussion above suggests, V' is not really fundamental; we intro-
duced V to stand for the input to vcgen. If we have an (annotated program,
specification) pair v € V, we are really only interested in the projections mv
and ov. The program satisfies its specification when

Ms(ov)(Mp(rv)) = true.

VC generation is sound if the truth of the verification condition guarantees
rhat the program satisfies its specification. The truth of a verification con-
dition must be independent of state, so the function vcgen is sound if, for
anyv €V,

Vr € X(Ma(vegen(v))) = Mg(ov)(Mp(nv)).

Polak [14] goes into more detail, giving a complete definition of vcgen for
a small programming larguage P. He describes a way of deriving vegen from
the semantics of P and sketches a proof of soundness that uses structural
induction on programs. The techniques he describes are the same ones used
to define the semantics of Larch/Ada and to prove the soundness of the
predicate transformers implemented in Penelope.

The Penelope implementation

We are implementing tools that support research in formal verification us-
ing Larch/Ada. Of these, the most important is the Penelope editor. which

13

helps users develop verified programs. In the prototype, there is no support
for writing traits: every specification has the same shared language part, and
there is a fixed assertion language used for all specifications. The prototype
can be used to specify and prove Ada subprograms, provided those subpro-
grams use no global variables. We plan to extend the Penelope prototype
to read definitions of extensions to the assertion language. We plan to sup-
plement it with a tool that will help prove Penelope verification conditions.

Status of the implementation

Penelope is implemented using the Cornell synthesizer generator [17]. The
Cornell synthesizer generator accepts as input a description of an attribute
grammar and compiles this description into a syntax-directed editor which
can compute and display the values of attributes. The heart of this edi-
tor is an algorithm which, when the edited tree is changed, computes and
propagates the changes in attribute values [16].

We think of Penelope as having three components: predicate transforma-
tion, proving, and simplification. Predicate transformation is central. That
component reads and interprets the Larch/Ada annotations. computes wp,
and generates verification conditions. The user controls which intermediate
values of wp are displayed and which verification conditions are displaved.
The displayed values are updated every time the user changes his or her
program or specification.

The proving component is a sub-editor that enables the user to construct
proofs of the verification conditions, using a sequent calculus. The editor
presents a list of hypotheses and a goal. and the user designates an infer-
ence rule to apply. The application may generate subgoals. and the process
continues until the subgoals are reduced to axioms, which are automatically
recognized by the editor. The editor has built in a small number of proof
tactics: the user can designate one of these tactics instead of designating a
rule.

The simplification component is a set of functions that can be called
by the other two components. These functions make the preconditions and
verification conditions more readable. One function does this by rewriting;:
terms like PAtrue are rewritten to P, and so on. Another function attempts
to find ways to substitute simpler terms for terms that are especially complex
or hard to read. Another performs arithmetic operations on integer literals.
Several functions manipulate the forms of terms in order to make other
operations easy: depending on circumstances. one may prefer P D ((D

14

(RDS))to PAQARD S, or vice versa. (We are using D to represent the
implication symbol in the assertion language.) Collectively, these functions
reduce the size of the verification conditions Penelope generates.

The currently supported subset of Ada We have imposed a number
of restrictions on programs editable with Penelope, as described earlier.
Concurrency, real number types, parameter aliasing, storage_error, and
some other features are forbidden. Here are the highlights of what Penelope
does with those programs it accepts:

Subprograms may call predefined or user-defined subprograms; recur-
sion is supported.

Arbitrary user-defined exceptions, raise statements, and exception
handlers are supported.

Integer, Boolean, enumeration, array, and record types are supported.
The predefined Ada operators for these types are supported. (Subtyp-
ing is not supported.)

All of the Ada control structures are supported except goto state-
ments, cage statements, and for loops.

Some static semantic checking is performed, including type checking
and overload resolution.

The current Penelope is limited in what it can prove. Many capabilities
which might be considered difficult have been investigated mathematically
but have not yet been implemented. These include:

Proving that neither of the predefined exceptions constraint_error
and program_error is ever raised

Proving that programs terminate
Proving that programs are not erroneous

Detecting potential aliasing and illegal order dependencies by suitable
static semantic checking

Proving programs that define subtypes whose bounds are set dynam-
ically

Proving programs that may raise or handle the predefined exceptions
constraint_error and program_error

15

The currently supported subset of Larch/Ada The current imple-
mentation of the Penelope editor supports most of Larch/Ada. The major
features that are missing are those associated with termination, global vari-
ables and side effects, and data abstraction. As noted earlier, there is no
support for writing traits in the Larch Shared Language. This means that
the shared language part of every specification is the same, and that there
is a single assertion language used for all Larch/Ada specifications. That
assertion language is restricted to terms describing integers, Booleans, ar-
rays, and records. (Enumeration literals are converted to integers during
predicate transformation.)

Future plans

Simplification The greatest weakness of the current Penelope editor is
that weakest preconditions and verification conditions are too hard to read.
The simplification component is good at reducing the bulk and complexity of
Boolean terms: most of the complexity in verification conditions comes from
arithmetic terms. Simplifying such terms is ilie next step in improving our
implermentation. Rather than build an arithmetic simplifier from scratch. we
plan to connect an existing simplifier to the Penelope editor. The simplifier
that we plan to use is based on the Nelson-Oppen procedure for combining
decision procedures {12.15].

Extending Penelope In order to support data abstraction, we intend to
add packages and private types to Penelope’s Ada subset. (Adding these
constructs is straightforward: the major difficulties involved in supporting
data abstraction arise in extending the assertion language, as discussed be-
low.) We may also add new control structures. in particular the case state-
ment and the for loop.

In the longer term, we plan to add support for proofs of termination and
for proofs of subprograms that have side effects on global variables.

Data Abstraction It is not possible to write readable formal specifica-
tions of large programs without taking advantage of data abstraction. Gen-
erating verification conditions for programs that use abstract data types is
not hard, but generating sound verification conditions for implementations
of abstract data types can be tricky. This is especially true in Ada. where
the abstraction constructs do not completely hide the representation.

16

It is also hard to simplify and prove verification conditions when speci-
fications refer to abstract data types. The essence of the difficulty is that.
when using data abstraction, the user must add new terms to the assertion
language. (These terms describe the new abstractions, like stacks, buffers.
registers, or whatever may be needed to specify a particular application.
They are introduced and defined by traits written in the Larch Shared Lan-
guage.) To be able to make effective use of the new terms, we must be able
to show that their introduction does not lead to any logical inconsistency.
We must also be able to extend the proving and simplification components
of Penelope to be able to handle the new terms.

We will begin studying data abstraction by making our assertion lan-
guage extensible. We will use a tiny subset of the Larch Shared Language,
a subset which will enable us to add to the assertion language new sort and
operator symbols. In particular, it will be possible to add abstract sorts and
abstraction functions to the assertion language. We will then allow users to
make assertions (without proof) involving the new symbols they have intro-
duced. In proofs of programs, these assertions will be treated like axioms.
We hope that, by studying the kinds of assertions users make, we will be
able to learn what methods of proof might help users prove programs that
use data abstraction.

Conclusions

Our efforts have been concentrated on defining Larch/Ada-88 and on build-
ing the Penelope prototype. Evaluation of Larch/Ada and Penelope must
await the completion of the prototype and experience with its use, but we
can draw some conclusions about the methods we have applied and about
the difficulty of the problems that remain.

We have developed a useful technique for deriving predicate transform-
ers, and we have developed a method for implementing the transformers
using an attribute grammar. We have some preliminary observations about
the results of attempting to mechanize Gries’s and Dijkstra’s methods of
program development. Finally, we believe we have learned what problems
need to be solved before a useful verification system can be built.

Implementing predicate transformers The denotational style of writ-
ing predicate transformers lends itself to a natural and efficient implementa-
tion of the transformers as an attribute grammar. Values in the transformer

17

definition map to attributes of the grammar, and meaning functions map to
the semantic equations that define the relationships among the attributes.
We can avoid implementing lambda-abstraction and beta-reduction for the
language of terms by using pairs of attributes to represent values of arrow

types.

Mechanizing formal development The biggest obstacle to learning
Gries’s method of program development is the drudgery of computing wp.
This difficulty increases as the complexity of the programming language
increases; it would be unrealistic to expect to compute wp by hand for a
language like Ada. Fortunately, it is easy to mechanize the computation
of wp, provided a denotational-style definition of wp is available.

The problem with a mechanized computation of wp is that the resulting
preconditions quickly become too complicated to be understood by a human
being, at which point they can no longer be used to guide program devel-
opment, which is the whole point of Gries’s method. We have vet to learn
whether mechanical simplifiers like the one described by Nelson and Oppen
can make the preconditions understandably simple. The problem doesn't
arise when wp is computed by hand. because in that case the programmer
constantly applies his or her knowledge of integers, sequences, Booleans. and
so forth, so that computation and simplification proceed simultaneously.

Open problems The Larch/Ada specifications we can write using Pene-
lope are limited by the fixed. non-extensible assertion language. (It is a
severe limit; for example. at this time we cannot introduce the factorial
function for use in a specification.) The programs we can prove using Pene-
lope are limited by the size of the weakest preconditions Penelope computes.
We believe that the most important problem remaining to be solved is the
one of being able to introduce new terms into an assertion language. while
simultaneously introducing methods of simplification and proof for those
terms. The Larch Shared Language provides a way of writing formal defini-
tions of new terms. We need to develop a formal representation of methods
of proof and simplification. Finally, we need to develop wavs of showing
that the addition of new definitions introduces no logical inconsistency. and
ways of showing that the proof and simplification methods are consistent
with the definitions.

¥

Related work

AFFIRM, built at USC-ISI, was the first verification system to use algebraic
specifications and a rewrite rule prover {11]. The Gypsy system was the first
verification system to handle a form of concurrency [7]. The Stanford Pas-
cal Verifier was the first verification system to handle a real programming
language [9]. The most important contribution of the Stanford Pascal Ver-
ifier project was probably the Nelson-Oppen method of combining decision
procedures {12].

The Anna project is an effort to introduce formal specification to Ada
programmers by providing specification constructs which can be checked at
run time [10]). The aim of AVA project is to define a verifiable subset of Ada
and to give it a formal semantics using Boyer-Moore logic {18.1].

Acknowledgements

The work described herein was done at Odyssey Research Associates with
Wolfgang Polak. Carla Marceau. David Guaspari. C. Douglas Harper. and
Doug Weber. Anna provided large repository of specification constructs.
on which we drew heavily when designing Larch/Ada. The Anna group at
Stanford was forthcoming with suggestions about how formal verification of
Ada programs might proceed. John Guttag helped us to understand Larch
and to explore how we might adapt Larch to Ada. In particular. he helped
us elucidate the issues that needed to be addressed in defining the semantics
of a Larch interface language. John Guttag and Steve Garland lent us their
theorem prover. 1p. which we used in our study of verification conditions
generated by Penelope.

David Guaspari and Wolfgang Polak helped me understand the formal
foundations of Larch/Ada and Penelope. and thev corrected many errors in
earlier drafts of this paper.

References

[1] R. S. Boyer and J. S. Moore. “Proving Theorems about LISP Func-
tions,” JACM 22, 1. 129-1-41

[2] Edsger W. Dijkstra. The Discipline of Programming. Prentice-Hall.
1976.

19

(3] J. Crow. S. Jefferson. R. Lee., M. Melliar-Smith. J. Rushby.
R. Schwartz. R. Shostak. and F. von Henke. Preiiminaryv Definition of
the revised SPECIAL specification language. SRI International. 1986.

[4] David Gries. The Science of Programming, Springer-Verlag. 1981.

[5] J. V. Guttag, J. J. Horning. and J. M. Wing. Larch in Five Easy
Pieces, DEC/SRC TR 5. July 1985.

[6] S. Garland. J. Guttag. and J. Staunstrup. “Verification of VLSI Cir-
cuits using LP”, manuscript.

[7] D. I. Good. R. L. Akers. and L. M. Smith. Report on Gvpsy 2.05.
Computational Logic Inc.. 1986.

[8] C. A. R. Hoare. “Proof of Correctness of Data Representations.” Acta
Informatica 1, pp 271-281 (1972).

[9] D. C. Luckham et al., Stanford Pascal Verifier User Manual. Report
No. STAN-CS-79-731. Stanford University, March 1979.

(10] D. C. Luckham et c., Anna: A Language for Annotating Ada Pro-
grams, Reference Manual. 1986.

[11] D.R. Musser. “Abstract Data Tvpe Specifications in the AFFIRM Sys-
tem.” in Proceedings of the Specifications of Reliable Software Con-
ference. IEEE Computer Scociety (April 1979). 47-57.

(12] G. Nelson and D. C. Oppen. “Simplification by Cooperating Decision
Procedures™. ACM Trans. Program. Lang. Syst. 1.2 (Oct. 1979). 245~
257,

(13] Wolfgang Polak, “Program Verification Based on Denotational Seman-
tics.” POPL '81. '

[14] Wolfgang Polak. A Technique for Writing Predicate Transformers.”
submitted to LICS '89.

(15] T. Redmond. Simplifier Description, Aerospace Technical Report
ATR-85 (8354)-8, Nov. 1985,

(16] Thomas Reps, Generating Language-Based Environments. MIT Press.
1984.

(17] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator Ref-

erence Manual, Department of Computer Science, Corneli University,
1987.

(18] Michael K. Smith, “A Verifiable Ada,” Formal Methcds Committee
Report, Ada Letters 8, 4 (July/August 1988), 136-142.

[19] J. M. Wing, “Writing Larch Interface Language Specifications,” ACM
Trans. Program. Lang. Syst. 9.1 (Jan. 1987), 1-24.

CISTRI3UTICN LIST

3iiresses

AWICIn
ATTN: John (C. FAaust
Sriffiss AF4 Y 12441-S7 "

DRA Cu?PIRATL ™
3314 Datas drive
Ithaca NY 1o =1315

2L/oTVL
Tecnnicail Livrary
Sriffiss Af Y 13461-7777

Administrator
Jefonys Tachaicgl Tafl Tonter
DYIC=FNAL

Samargn Starica o ailsvn, G
Lexantria v 707 L=-atu”

L

Ttrateic Defongo Tnjgiative "Fficn
GTE€€ica cf *ho Toucrertiry Yf Nefensgo

wasn I o2LIT1-TY

AR RORA

'Srif‘i*;‘; P YT Tt

C IR R L Aol thd
disninatan L L5 7T L,=51 .,

TAFRSANLTC
2ent yyan 2mo L A
Wasy (2 2.7 0.

~L-1

AW}

i

nuabar
of cooies

Naval Harfar: i3sassnant

~

lasntor

21022 Yperations Zoanter/todz 30

ATT = Richars
Carona CA 3177

4id AFSC/YTY

Antroeds AF3 o 21334~ 5007

43 5a0/5CPT
VFFUTT AF3 & 4-74:

HY TAJ/ORLY
4TTH: vaj. Divine

Langley &F2 yi [71545=2,77

43 Tal/DDa

Lanjyloy AF2 Y4 35e5=-527°4

ASC/ TS
dright=2atterson AfF 1 TH

SA=ALCsmACTA

ATTin: Danny ‘¢ilure
L4y 217, vASE
ellellan 3F7 (4 5555°C

LRI TS A
Wrijht=F3ttersan a¥f 1 Ok

ARDC/AART =2

Pes

ATTN: Mr Franklin Hutson

WPAFY AH 454735547

363T=£6547

>L-2

AFIT/LOET
3uilding 42, Sr2a
Wright-Fatterson AFu CH 45437-43%3

dIDC/MT L
Wright=Patterson AFs SH 45437

AEMEL/H:
Wright=ctasttersnn AF 3 Tr GJ4LZI=%573

Lir Force Humin Sosources Labw
Technical Documants lentar
AFHRIL/ILAS=T O

drijht-rattersnn 36~ N 434737

ACL/LS3E
L5 1405
axwall 473 20 41 1e=55%%54

M1 ATIITT LT
AT The Ly ol <illin
Sarndalan 4ty Ty TIqC -0

AfFLC/LGY

ATThN: Maje “natfoer
wildin; ¢2°

Suntar AFS AL 1.1V .=nH]

W2 armv Strat»cic Lot
Tinu=l =24

MY oaax 1307

Hyurtayitle oL 5% 7=7 1

Yo ot the Thiat Hf ayal Tneratioe
STTh: Aflliyr 4.0 020k

vavy Slectramiinetic sn2ctrum ot
Rgam 325743, "arxatajon (7=047)
A33h 57 2375,

Commanding NFf

NMaval tviorics Tenter
Library D775°

Indianapolis [45313~1122

Comnanding 2fficer

Naval "ca2ap Tysioms [ontoar
Technizal Linrary
Code 93424

San 0iagn CA 715

-
-3

()

~ 8-

“mir

‘taval de2apons Cantor
Tecnnical Linrary /7343
{hina Laxe 13 35553%=-4,1

o4
L —

Suoerintendant
Toda 524

Navial Postariduites schaal
Aanteroy C& I334T-500 0

50ac> % Navil <yrfa
Wisninjtan O 2 7

€22, JaSe Army 'issila ZHomrarid
Padgtnone jcientific Info fenter
AMGHAT=3D=0S=2/1LL Documents
Radstane Arsenal L TH e2=5741

tdvisary 3fnus an :-lacrran Cevices
221 Varick Straeest, Im 1147
NMew York NY 1_..14

Los Alamos National Linaratory
Report Library

MSs 53 TgT

Los aAlamos N?* 77344

nL=-4

—

AEDC Library 1
Tech Filas/4s=-11"
arnolg AF2 TN 37339

Commander, USAR 1
ASAH-PCA~CRL/Tecn Lid

gldg 61521

£t =suuchuta al 35130l "

1319 =156/7321°7 1
Kaeglor AFZ V) 33374=-45747

AFSWI/782] T
San Antonio "X 77243=5177
TIDIYARY 1

Hangcom AFS Y L 173%3V-5L07

(V)
[}

Sel Jr© 1
ATT~: Yajor Tharlas J, ~yar
Carnajie *allyn Univarsity

ojtesourah Fa YL T10-70

diractnr NSASOT 1

TS122/7/70L

ATTN: O W Aariarym
755

Fort ‘tegde v T -

P

<
4

directoar NSl 10T 1
4157

SETT Lavygae Joaad

Fort eade M- 1 SS=f

-~

SV

NS A
ATTN: P, Alley
Div X911

530 Zavage 933
Ft Meade 4D Z707385<5000

Directnor

NSA/CES

W11 pEfEswag

ATTMN: #wp, “3rx ., L(lesh

-~

Fort Goarge 5. Meade ™2

Ddirector
NSA/LSS 212

ATThN: Yr. Dennis dHeinoucn

9353 S4avage 037
Fort (3ed3rge T. izals 4D

3090

231

9337 Savage 2031

Fte Yeade %5 277%5-4 07

DIPNZa

850

3¢ Savije 2oat
Ft “eade MO 2.77°

Diractor

NSAZLSS

RIALE ST OSLE

Fort george . Yeane ™D

9322 Computsr (2antoar
CI171C

927 javage "o

Fort 4Leor3je ~. *Yeae 40

3D/ AV
HANSCOM AFA 2 0 1731=57"

HANSCOW AF9 vi 1771=5. 10

277584000

I

IN7SE-4)

227585=4£27)

DL-5

—a

-2

FL c?07/732%¢88nCh LTI3IRAMY
L Aa/SutL
HANSCOW AF2 ™2 [1731-5000

TECHMICAL REPCTRTS (ENTER
MAIL D230° D177
AUPLINGTON ROAD

AEDFNID ML L1730

SDIZ/S=P1=aMm

ATTN: Cwar <o3rajo
The Pentagon

Wash 2C 20¥1L-71z23

SHOIQ/S5=PL=7

ATTN: Capt Johnsaon
The Pentazon

Wasn O0C 20%301-7000

IDID/S=Pt=av
ATTH: LY Col =inge
The “entagon
Wwash vC ?233.1-711))

S21 Technical Trformation Center
1733 Ja2ffersnn Savis A4ijhway 175°
Arlinyton Yy 270002

SAF/847D

ATTNe H3j 4, ¢, Janes
Tho Tamt330n

wash of 2733

afS5C/ICV-D
ATTN: Lt Col flynn
Androws AFT 7L J 3T 4=5100

Hd 52/1Y7
2TTN: 2oL A2inacn
P2 A9x 4094

dorl tway rostal CTen
Los 3njelses [

]

<ort

I |

S T

~L-7

N3 3307CM¢

ATTN: €2l " srioan

PO sox 2950

Worldeay Castal Jenter

Las snneles i 2,705 s=0%4

Hd SHYFINCI

ATTN:, Col Coxltlins

PO Sox 92767

Worldway Post3l Center
Los Anneles i 2509=23940

T3D/AT
ATTYMN: Col Ryan
Hanscom AF3 iy + 1734=57"°"

I307a7Y
BTTn: Lt Lol “lianpar;
Hanscom &FfP ¥4, 1731-5" 7"

T3ID0/ATH
ATTN: (ol Leid
Hanscom AF2 »4 17711-57°7

AFSTL/xRY (Lr Zol Coatucci)
Kirrtlana AEY % 27117

AFSPACTCOMIXED
ATTA: %3j Ro~er Huntoar
Potersnon AT3 (7 B2 WA

35D/¢CHT

ATTN: Lt Cal Joe royge

Pe Jeo Fax 722350

Los Anteles afF™ (4 970 %=204"

NTsC gPs
ATTN: Maj onn Savenscroft
fFalcon AF3 €Y 2,312

AN G

Naval Air Development (tr
ATTN: Or. Mort Yetersky
Code 37D

Warminster P& 139774

HY AFDTEC/OAMS
ATTN: Or. 33muel Charlton
Kirtlind AF3 % 87117

CSDIXTS
ATTN: Lt Col Jos=2ph Tonla
Hanscom AF= ML 17731

S5DIC/aNa

ATTN: Col R. worrell
Pant 3jnn

Wash oC 2L

USA=50C £356D0=n=; 17
ATTN: ¥r. Doyls Thamas
Huntsville At ":-.7

H3 AFLPECIC2/2LY2

ATTNS Canpt <i1rx Tepprace
Stop 7

Paterson 8F3 7 2914

F50/7V¥TTY
ATTN: Lt Col faul Y9nicn
Hanscam AFA *s 1727

£3SD=H=-41

ATTN: re Lirry Tuons;
Commander UYir 50¢
23 Tox 1577
Yuntsville at 7537

SR ACTINMIIS

ATTA: Lt Col Haroly Ztanley
Datersan A€ 4 D0 Tty

SL=

NT 1 for
ATTN: Yp, N2t 303jouncr
Falcoan AF3 C3 "_712

AADC/LTA
ATTN: Mr. Anthany F. 3nyier
Griffiss AF3 NY 13441

AF Soace Commani/XeXxis

Paterson AF3 {7 20514=-5771
AFST=CIX=Do

ATTN: CIpt drndel

Kirtlang B8F ¢ v* 37117

Diractor N3A (V3I1)

ATTN: wveorge dnaver

I47; Savaye 703

Ft Searge G, tagde 90 21735=477 "

S30/70:0. T4

ATTN: (10t “randanpur;
20 I7X 276200,

LOS ANGILIZ Ca W 0 §=27s"

Marional Comanuter “ocuri*y Centoar
AT Th: C4/71C
9371 Savage 2934

Fart uveorge 5 Meade 1) T,753~37 0"
Unisys Caro/iatuare Infs Sys Div

ATTN: Lorraine Yartin
5151 Caminn %gyig
Camarills CA /7217

“itr2 Coarp

ATTN: Dale ¥, Jnanson (MS a747)
Aurtlington 24

Jedford 4a 17 =320

nL=1e

-

Secure Comouting Technalagy Coro
ATTIN: Jo. Thomas Haigh

1210 west County *nad .. (Ste 127)
Arden Hills My 55112

Mjtre Corp

ATTN: Joshua Zuttman (M2 AC4D)
auyrliniton 4

edfaord WA (1732-3205

Mitre forp

ATTN: John Janari (M3 2747)
Jurliniton R4

Jedfard M G1731-724

- -

ARA Torparation

ATTN: Dr, Ricnara Plarak
TIT1A Harris Y. D3tes Or.
Tthaca NY 14635771315

vational Security #jency
ATTNT Larry watch/=S

?8504 savije 2?1
Ft dagde MD 277%

-~y

It

Yational 3Security 43ency
ATTN: Mark Woanienexk/I07T5
93746 Saviage 1

Ft Meade 9D T _7I5=~7_

asearch Laoporatnry
ATTN: CJarl F. Landdehr (fnae T547)
1“.17;_;":’".

Y43 Army Communicatian=-“lactronics
Cormand

ATTN: AM3Z{=3nN=(3=]5=-9

ATTN: Jonwn W, 2r2uss-

£t Monmouth NJ 277773

"ASA Lanjley “esegrcen Center

ATTYN: Ricky -utler (2C 127)
Hampton VA 27 s55=57.0%

=11

Yfational Security &S ency
8TTN: Michela Fittelli/s<?
M35. Savaje =i

Ft Megde MD T 7855-6.7,

National Security 4jency
ATTN: Howard Stainor/=<27
9322 33vage 22

FT Meade "D ?213755=5i 0

SRAWRR/Cnde T24C
ATTN: 03 Kotlicki
Wash DC 227472=-317

Yavil fesearcn Laonraitory
ATTN: John Mcio2an ((2de &S
dash DC 235375 =550)

A3ID/YFAF (¥s Iwan3ii
Aright-Patcerson 2Fs 34 45

“Yaval wesaarcn Liosoratory
Code 55402

ATTN: He e Lunhes

Wash vC 20375-3u0 3

DARPAIISTS

ATTN: Or. William Scherli
1450 wilson lvi

Arlington VA 220 y=-2771

DA2PA/ISTO

ATTN: Dr. Jack Kramer
1472 Jdilson ~“lva
Arlinjton VA 2220 9=-23)3

St 479

TTN: 733 Charles Jo Fyan
Carnegie Mellon University
Pittsourqgjh Pa 152173=389

R

S47)

S

Defense Communications Anency
ATTN: Dr. Cass Defjore (Code £CA)
Advanced Technoloyy Jdffice

wash o€ 23%1.,5-2:3¢C

301273504

ATTN: Lt Col Jim SwaeAder
entagon, Poom 17149

Wash DC 20310

=SD/AVSE
ATTN: (C23pt “foland Lelieur
Hanscom AF9 4L 1771=-37" %

Trusted Information Systems, Inc.
ATTN: zichard . 3Scheinyer

Padle "inx 645

32463 dashington »4

Clenwaod 4D 21772

SxI International

ATTN: Sarlenz _hargon

Far:t Comy Sci Liafdecan 2yshhy
333 SFavenswon i zya

Yanlg Park a4 o7 2°

Instituta for Yefansa inalysis
ATTN: 2r. Pussall Fping

TOm3 % Soft “ns Diy/fd. Yayfial”
121 . Yesure tar 1 Stegac
Alexantdrig vy DT 1t1-177

Securs (omouting, Tecnnal gy Corpn
ATTH:T Jerry A, Horay

1210 4o founty A T, Syira 1°°
drden Hills v, 277112

SNT Inrernation,l

ATTw: varlen: herwdot

Fyr: Como 3ci Lan/Tssrosy Lunt
33T Jywenswdatl sfvo

Menla 2ark (X 24 28

Tha Lerdsnacs Torplia® Yovaloo div
ATT Jimes 5, Tap

£ar: Tenrae ailloey, YL=-T4S

Pele X 327337

Los Snjeles (& + 1 9=2137

37 CafStratesic Jystans oot
ATTw: Tim Faslak

for: ~ill Donsch

1727 Sentry 2arx d.r, S0 Tox 1770
Sluenall P4 13422

CalStrateric Systems et
: Tim 23klik

s Yy, %0n Harking

1727 5Sentry 2iark da.r P “ox 107
luy=2netl P2 17402

~

Advisory J=2un aon Slaectron Devicas
231 VYarick Stracot, dm 11547
Ned York NY 17714

MIT-T £2orD
AT T dJre D301 3 CUOMD
Aadtard A Y770

€yr4 A2rnscic> [Oorgo

c/0 2ockwell Internatinal
ATTN: Dr. Jrin Schul:
1252 acaiemy “Zark Lonon
rolorado Sorians T2 o1

Tssax Tord

AT TN Jre "o Yackia
HUMan Tactors “as2arca iy
€775 s3Iwsan dye

Goleta 24 33117

2J0 Znterorises

ATTN: we, Jave Tsraat
1225 Joffarsan Javis Y
Suiste TJ)

Arlin;ron vy 27000

33y Systams 2 T2chnaloay
AT T e Ure DiCe P2y

7, Faacett ¢

Camyridne vae 711

Jonnie “cdaniel, nDE
147 fFeanklin St
dyntsville aL 3521

GL=14

Yareris Caryp

50vernment Infa Sys division
AT™%: Panca #2nning

PO doax 979323

Y lpourne FL 27972

Fard A®e2803Ce ¢ (omm I9HFO

ATTi: Peter ~ake (¥ail Stnp ¢72)
1uese State Hithwiy 33
colnarato Sprinis CC 4272

(1]

Cnmputitional Louqic, [nc.
AT T dr. J20onali I. 39907
1717 wa H5th 5t (Tuitte 772)
Auston TX 7477

-}

mini Computers Inc.

The ~ag3er Lcnell

11 Garden 22 (ldy C»r St 1070)
nt

-~

eray (& ©7 -4’

19eingy iaensnice (D

3TTw: [an Schnackanhery (A3 25=11)
P,2, nx 399%

Seattle Wt 331 T4~ca4v

27N Larsratoriess, Inc.
ATTHN: Steys VYinter

1 Youltan straest
Cambrit e <4 o7

-

Jniv A€ Lalif 1t Sinth armar)
faovputear Sci

AT T . Senf c3cn3r 1 a, “ammorar
53nta Yardary - 2217

nﬂ(.. \“41,_,0

ttnisys arc
ATTY: Janarir lcorer
S771 Slauson fve
Culver ity 7% <

L=15

-

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of CBI systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

